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Note

Analysis of the Effect of Boundary Conditions on Numerical
Stability of Solutions of Navier—Stokes Equations

The purpose of this note is to emphasize the cause of the computational instabilities of the
ADI scheme. A heuristic extension of the Fourier method involving the effects of various
types of boundary conditions is applied to two problems, the driven cavity flow and the
natural convection in an inclined solar cell.

1. INTRODUCTION

When an ADI-type time marching procedure is used to solve the unsteady
Navier—Stokes equations, it is well known [1] that numerical stability problems
occur, although an unconditional stability is predicted by analysis using the conven-
tional Fourier—Von Neumann method. As suggested by Roache [1], the lack of
convergence may be due to non-linear instability for the interior points, or to the
influence of the boundary conditions, which are not taken into account in this
method.

The purpose of this note is to emphasize the cause of the computational
instabilities. For this, an extension of the Fourier method involving various types of
boundary conditions is applied to two problems. Such an extension, which has been
similarly worked out by Taylor [2], and Trapp and Ramshaw [3], is only heuristic.
But, as noted in Ref. [3], the conventional method is generally applied as a local
method and is then also heuristic. In the case of a parabolic equation [3], the results
obtained with this method have been shown to be very close to those obtained with
more elaborate methods, such as the energy method. Another type of stability
analysis, which is more complete than the Fourier method and which takes into
account the boundary conditions, has been worked out by Smolderen [4]. In this last
study, improvements have been made in the case of hyperbolic equations treated with
an explicit scheme. They exhibit the influence of the boundary conditions on the
generation of instabilities. In the case of the Navier—Stokes equations discretized with
an ADI scheme, this type of stability analysis is not easy to apply, and the heuristic
extension of the Fourier analysis has been preferred, as a first approach, to determine
the stability conditions.

Some authors |2, 5~7] have previously mentioned from numerical experience that
the boundary conditions imposed on the ADI scheme a time step restriction of the
417
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form At/h* < a. However, the applications were restricted to a limited range of flows
and the investigation of the numerical stability was not sought systematically.

The present stability analysis has been used for the driven cavity problem and for
the natural convection in an inclined solar cell, differentially heated. This study aims
to derive stability criteria which involve the main parameters of these model
problems, viz., the Reynolds number, Re (driven cavity problem), the Prandtl
number, Pr, and the Rayleigh number, Ra (natural convection problem).

2. GOVERNING EQUATIONS

The governing equations for these two problems are considered in a non-
conservative form in vorticity, temperature, and stream function variables.

G+ ul + vl =a,(l +C)y)+ a,(sin - T,+cos-T,), (1a)
T, 4+ uT, +vT,=ay(T,, + T,,), (1b)
l//xx+ Wyyzc’ (10)

where u =y, and v = —y,.

In the case of the driven cavity [1, 8], the coefficients are a, = 1/Re, a, =0 and,
then, there is no need to solve the energy equation. In the case of the natural
convection [9, 10], the coefficients are a, = Pr, a, = Ra Pr, and a; = 1, and 2 is the
inclination angle measured from the horizontal.

In many applications, the boundary conditions on the variable y are overspecified:
w and its first derivative normal to the wall, y,, are given on each boundary (no-
permeability and no-slip conditions). For the energy equation, the problem is well
specified either by Dirichlet conditions or by Neumann conditions. However,
concerning Eq. (1a), no physical condition exists for the vorticity at the boundaries,
and ({ values are determined by an expansion procedure using the no-slip conditions.
Second-order formulations are derived from Ref. [1]:

, . 1 3 1 3
Woods’ formulation: {,=— 3 Cwor + T Vw1 T T Ve + 7 Uy, (2a)
. 1 3
Jensen’s formulation: {,= I (—v, »+8w, ,—Ty,)+ 7 u,, (2b)

where 4 is the spatial step size.
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3. NUMERICAL SCHEME

The ADI method is described in the driven cavity case. The advancement over 24¢
is accomplished in two steps for the vorticity transport equation (1a),
e ol — - @, + ) =0 (3a)
At x ¥ Re ™™ VW ’
Cn+l _ C*

1
T Fultt ol — — (G + ) =0, (3b)

Re

where the superscripts (r) refer to time level.
The streamfunction equation (1¢) is similarly solved as a time-dependent problem,
with two fictitious time steps 47,

n+ 1, n+ 1,10

y'tt —y
Vaks

n+ld+1 o n+ 1"

v
At

— s w0 =0, (4a)

_(W:‘l;l,l-i»l+W;;—l.*)+cﬂ+lzo’ (4b)

where / is the iteration index. The first step (n + 1, /= 0) is identical to step n. When
the transient solution is sought, iteration to convergence is used at each step (n + 1).
In the present study the steady solution is required and only one iteration is used with
the parameter At arbitrarily chosen equal to 4:.

The half-step * has no physical meaning, but it is necessary to use a correct
prescription of {* on the boundaries compatible with (" and {"*' [11]. The spatial
derivatives are discretized with a second-order, accurately centered scheme. The
nonlinear coupling terms, ¥ and v, are expressed at the middle point (i, j) of the “five-
point” basic mesh shown in Fig. 1.

J

i-1,3{1d ie1,j

i I

Fic. 1. Differencing mesh system: zero boundary point (case A); one boundary point (case B); two
boundary points (case C).
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4. STABILITY ANALYSIS

The solutions of the discrete equations at the interior points are studied by using
Fourier series expansions of components with separated variables,

C:', = Z"elm(i01+j0y)’ (5a)
W?j — Pnelm(uexﬂey), (Sb)

where the subscripts (if) refer to x, y indices (1 < i < I, 1 <j <J). The solutions are
considered locally at three points in each spatial direction. Three main cases are to be
investigated (Fig. 1):

— the conventional case, denoted (A), involving interior points only;

— the case, denoted (B), where only one mesh point is on the boundary;
(Associated conditions will be denoted “wall conditions.”)

— the case, denoted (C), where two mesh points are on the boundary. (Associated
conditions will then be denoted “corner conditions.”)

The linear coupled relations, either (2a) or (2b), are used as boundary conditions:

n 1 n 3 n i0y _ 3u,~
U:(_EZ +Fp)e1m(9+u 1)0y)+_h_.1_’ (6a)
n o R (8 — e~ Imby) PrgimiOxt =16 | 3uyy (6b)
U an? PRk
with
vy =0. (6¢)
Relations (5), (6) are substituted into Egs. (3), (4), which are solved as follows:
Zn+ 1 Zn
[Pn+1:|=G[Pn:|+C (7)

The necessary condition for the suppression of error amplification requires that
Max |4,| < 1, (8)

where the 4, are the eigenvalues of the matrix. The elements of G depend on the coef-
ficients of the linearized systems, and in particular the coefficients ¥ and v of the
convective terms. Their importance will be shown later.

When the analysis is applied for system (3), (4) at interior points (case A),
condition (8) is quite obviously shown to be always verified, which indicates uncon-
ditional stability. When it is applied in the neighborhood of the boundaries (cases B
and C), the eigenvalues do not satisfy condition (8) for any value of the parameters.
Then, one is interested in the study of the neutral stability conditions, that is,
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F1c. 2. Influence of Reynolds number on the numerical stability conditions (driven cavity).

Max |1,| = 1. Since G is only a (2 X 2) matrix, the eigenvalues are determined by a
quadratic equation. The coefTicients are complex and include the characteristic terms

A At 1 At
" U Ren™

where u, and v, are the values of u and v at the middle point of the mesh at the row
adjacent to the boundary. They have, however, a quite complicated functional form;
and it is then not possible to propose simple analytical relations between the
parameters to characterize the neutral stability state. Such relations, which have the
general form

a At 1 At
F —_ =] =
(“1 7" h Re hz) 0 ®
are determined “numerically” for each set of Re and 4 and for arbitrarily fixed u, and
v, by calculating the associated Ar. The results are presented in Fig. 2. The solutions
corresponding to u, = v, =0 (Stokes problem) will be of significant interest and will
be denoted At in further discussion.

5. DRiveEN CaviTy FLOoWwW

The governing equations have been numerically integrated with the previously
mentioned ADI technique by using the lagged Woods® estimate (2a) of the wall
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values of ¢, i.e., {%*' = ¢%. For fixed values of Re, the behavior at convergence has
been studied by varying 4¢; when A4t is gradually increased from zero, the
convergence is accelerated up to an optimum At value, beyond which the iterative
process rapidly becomes non-convergent. The experimental critical values of At,
denoted 4t,, are presented in Fig. 2 versus Re for fixed values of 4 (disregarding the
level of accuracy, which is indeed strongly dependent on Re).

For the case u; = v, =0, the “wall” and the “corner” stability limits are the most
restrictive conditions, respectively, for Re S4 and Re< 4, and, thus, should
determine the overall stability.

First, we observe that the calculations are stable for Ar/h’ larger than the
predicted values (Fig. 2). Verification has been made that this might not be due to the
fact that 4, and v, are non-zero in practice. Indeed, when tested with the range of the
calculated values of u, and v, for Re > 4, the resulting “wall” conditions appear, on
the contrary, to be slightly more restrictive.

Second, we note that the experimental values At /h* are included between the
“wall” and “corner” conditions Aty /A, as shown in Fig. 2, for Re < 200. When
Re < 4, these two conditions are very close and allow a fairly precise prediction.
When 2005 ReS 4, they become substantially different; although it is less
restrictive, the “corner” condition then appears to be a practical upper limitation for
the numerical stability. Concerning this range of Re, the numerical results show that
the experimental condition At/h’ decreases from the “corner” condition, where
h=1/10, towards the “wall” conditions when the spatial step size is refined, as
shown in Fig. 2 for Re =20, 50, 100, and 150.

For Re >200 and h=1/10, the experimental values At /h*> diverge from the
predictions. Such a divergence has been conjectured to be connected to the influence
of the coefficients u, and v, on the “corner” conditions. These coefficients become
substantially different from zero for large Re. This fact is obvious in Fig. 2, which
gives the predictions obtained with some arbitrarily fixed non-zero values of #, and
v,. These curves match the predictions Aty /h* for a wide range of Re values
(Re T 40). When Re is further increased, these curves diverge from these predictions
and finally exhibit a sharp decrease of A¢,/h* The limiting values of Re have been
found to correspond, then, to a cell Reynolds number limitation in the corner (|u,| Re
h=4 or |v,| Re h =4). This cell Reynolds number limitation is half as restrictive as
the one usually found in the literature for an explicit scheme [2]. It is, however, more
restrictive than the empirical restriction on spatial mesh size mentioned by Torrance
[6] for ADI scheme applied to flows characterized by diffusion coefficients nearing
unity (| h =8 or |v| h = 8). In addition, it is verified that the experimental values
At,/h? are again included between predictions Atg,/h’, when smaller step size values
(h=1/20, h=1/30) are used. Moreover, this limitation on the size of & is not too
restrictive, since it is also necessary to maintain accuracy through the boundary
layer, in particular.

Furthermore, it is to be noted that the temporal and spatial step sizes used by
Morris [7], with the same ADI scheme for (1a), agree also quite satisfactorily with
our stability predictions, although (lc) is solved by a successive overrelaxation
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TABLE 1
Morris Results (Re = 100)

h i/14 1/16 1/32 1/56

Atjh’ 49 40 48 28

routine and the evaluation of {,, used is the first-order-accurate Thom’s equation [1}.
These experimental conditions are shown in Table I for Re = 100 and for four values
of h.

Obviously, then, it is of practical interest to obtain simple analytical expressions of
these predictions in order to enclose the experimental stability conditions. For this
purpose, approximate analytical formulae of F have been sought for the “wall”
conditions (B) by considering the simplification u; = v, = 0; F is then written as

1 At

when  Re< g hgt ~ 2 Re, (10a)
1 At 14 (1 424 Re)"?

when  Re>g,  Sits + +12 " (10b)

For the “corner” conditions (C), no simple analytical formulae have been found;
therefore the following expressions of the critical values of 4t are obtained from
curve fits to Fig. 2:

4

when  0.20 < Re < 2, %: 0.40 Re"*, (11a)
At

when  Re> 10, £5L > 0.50 Re. (11b)

6. NATURAL CONVECTION IN A SOoLAR CELL

When the natural convection is considered, the governing system involves the
energy equation. The stability analysis is developed with one more variable, and the
conditions are sought to be related to the physical parameters, Ra and Pr, under the
form

At At At At
F(uIT’v'T’RaPr_h—’PrF> =0. (12)

Here, the Prandtl number, Pr, plays a role equivalent to the parameter 1/Re of the
previous problem. The range of Prandtl number values considered in this study is

581/36/3-10
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Fic. 3. Influence of Rayleigh number on the numerical stability conditions (solar cell, Pr=0.713,
0 = 60°).

from 0.1 to 10. The theoretical analysis of the stability has been investigated in the
cases of the “wall” conditions (B) and the “corner” conditions (C).

One notes the presence of the Rayleigh number in (12), which couples momentum
equations with the energy equation through the Archimedean forces. However, the
conditions derived from the theoretical analysis of stability are predicted indepen-
dently of Ra. This is confirmed by numerical experiments carried out by integrating
the governing equations with Jensen’s wall vorticity (2b), in the case of a solar cell
(Fig. 3). The calculations concern a squared cell, at an inclination angle of 60°, for
Rayleigh number values ranging from 500 to 200,000. For given values of Ra in this
range, the effect of At on the rate of convergence of the ADI algorithm has been
investigated up to a limiting value 4¢_, at which this algorithm breaks down. These
critical experimental values At, are shown in Fig. 3 and are in good agreement with
theory (wall and corner conditions), especially when the step size k is small.

An analytical expression approximating the “wall” stability conditions has also
been sought from (12) in the case u, =v, =0, using Jensen’s wall vorticity. This
expression is written as

Atg, 14 (1 +28/Pr)'”?

~

K 14 (13)
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Fi1G. 4. Influence of Prandtl number on the numerical stability conditions (solar cell, Ra = 500,
2 = 60°).

Condition (13) exhibits an effect of Pr which has been controlled for two step sizes
when 0.1 < Pr < 10 (Fig. 4). For the range of Prandti number values, PrS 0.4, the
agreement again appears to be entirely satisfactory between the values of Ai
numerically tested for the “wall” stability condition (13). When Pr< 0.4, the 4t,
values diverge from this condition and, as previously observed for the driven cavity
case, admit the corner conditions as an upper limit.

7. CONCLUSION

In conclusion, it appears that the heuristic extension of the Fourier analysis,
including the effect of the boundary condition as proposed in the present paper, may
allow the prediction of the breakdown of the ADI method used to solve numerically
the two-dimensional Navier—Stokes equations. Criteria for the stability of this method
have been derived in terms of the main physical parameters for problems as different
as the motion in a driven cavity and the natural convection in a solar cell.

When the coefficient of the diffusive terms is large (Re < 4, Pr 5 0.4), the “corner”
and “wall” stability criteria are slightly different and then give a rather precise
prediction of the experimental condition. When the coefficient is small (ReS 4,
Pr20.4), the two predictions differ strongly; the “wall” criterion is the most
restrictive and gives a lower limit for the experimental At./A?, while the “corner”
criterion gives an overestimation for these experimental values. Moreover, the
reliability of the criteria (10), (11), (13), obtained in both these cases, is ensured
when the cell Reynolds number is small near the corner, that is, when the spatial step
size & is small enough. This last restriction is also imposed with respect to accuracy
considerations.
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APPENDIX: NOMENCLATURE

G Amplification matrix

h Spatial step size

n Normal to the boundaries

P Modulus of the Fourier component (5b)

Pr Prandtl number

Ra Rayleigh number

Re Reynolds number

t Time variable

T Static temperature

u, v Velocity components

U, v, Velocity component values at the discretized points in the neighborhood
of the boundaries

X,y Spatial variables

V4 Modulus of the Fourier component (5a)

At, At Time step sizes

4 Vorticity

0.0, Phase angles

A, Eigenvalue of the matrix G

v Streamfunction

0 Inclination angle

Superscripts

1 Iteration index

n Time index

* Half-step for the ADI method

St Stokes conditions defined in Section 4

c Stability conditions from the numerical experiments

i j Spatial location index

w Boundary conditions
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